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Abstract

In recent years, much effort has been put into the development of novel algo-
rithms to solve the person re-identification problem. The goal is to match a
given person’s image against a gallery of people. In this paper, we propose a
single-shot supervised method to compute a scoring function that, when applied
to a pair of images, provides a score expressing the likelihood that they depict
the same individual. The method is characterized by: (i) the usage of a set
of local image descriptors based on Fisher Vectors, (ii) the training of a pool
of scoring functions based on the local descriptors, and (iii) the construction
of a strong scoring function by means of an adaptive boosting procedure. The
method has been tested on four data-sets and results have been compared with
state-of-the-art methods clearly showing superior performance.

Keywords: Person re-identification, Fisher Vector, Adaptive boosting,
Likelihood ratio, Similarity ranking

1. Introduction

The problem to automatically retrieve a selected person from video streams is
of fundamental importance to video analysis. Applications vary from searching
for suspicious individuals in a network of surveillance cameras, to maintaining
person identity from one camera to the other for behavior analysis. Several
factors contribute making the problem very hard, in fact a person’s appearance
can vary greatly through scenes due to changes in viewpoints, illumination con-
ditions, pose and orientation, or to the possible usage of different acquisition
devices. Other disturbing factors are the presence of shadows, occlusions, or
individuals in the scene with similar appearance.

Person re-identification consists of matching observations of individuals
across disjoint camera views. In very recent years, this problem has received a
considerable attention, and various surveys and reviews are available, pointing

1Corresponding author. e-mail: modena@fbk.eu. Phone: +390461314508 Fax: +39
0461314501
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out different aspects of this challenging topic [1, 2, 3, 4, 5, 6]. For this reason,
we direct the reader to these papers for a detailed discussion on the challenges
posed by the problem, and for an overview of state-of-the-art methods along
with their performance on publicly available data-sets.

Broadly speaking, in order to address the problem, people have to be de-
tected in videos and be represented by descriptors which aim to capture their
visual appearance. The descriptors are then used to compare different indi-
viduals and to determine the correspondence among them. Re-identification
methods proposed in literature usually avoid to consider the detection phase
and assume to work with images whose content is restricted to a bounding box
around the person. They differ on the descriptor construction that can refer to
a single view of the person (single-shot methods) or to multiple views obtained
by briefly tracking (tracklet) the person’s movements (multi-shot methods), and
on the comparison of descriptors, which can be direct (unsupervised) or based
on similarity measures learned using a set of labelled samples (supervised).

Although re-identification can be regarded as a binary classification problem
over pairs of people descriptors, it is clear that a binary answer (same person or
not) becomes harder as the gallery size increases. Thus the evaluation of a re-
identification system is accomplished by regarding re-identification as a ranking
problem rather than a classification one: the algorithms return a sorted list of
candidates and the best performance is obtained if the correct correspondence
is in most cases at, or close to, the first position of the returned list.

Using a standard taxonomy, the method proposed in this paper is a su-
pervised single-shot recognition method. The major novelty of the proposed
method, named BFiVe, consists of combining the power of Fisher Vector de-
scriptors with the ability of boosting procedures to select the most appropriate
local descriptors to build a strong scoring function.

Starting from low-level features computed at pixel level in regions obtained
from a coarse to fine image subdivision, an image is initially represented by a
family of local descriptors based on Fisher Vectors that are then dimensionally
reduced to an optimal size using Principal Component Analysis. In the training
phase, a pool of weak scoring functions is generated using the local descriptors.
Finally, the construction of a strong scoring function by means of an adaptive
boosting procedure is performed using a minimum error procedure on the weak
learners. The error is computed by analysing the position of the right match in
the ranked output of the weak scoring function. In this way, the regions that
better contribute to collocate the right match in the very first positions weigh
more in the global scoring function.

Previously published methods, to the best of our knowledge, aggregate local
descriptors in order to build a single image descriptor, and learn a single metric
to provide the final ranking. The novelty of BFiVe is that it learns a proper
metric for each subimage, i.e. there are as many learnt rankers as the regions
the image is divided into. A second learning step is performed using a ranking-
based boosting approach, which combines local rankers to establish the final
ranking function.

The proposed method has been experimentally validated on four challenging
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data-sets: VIPeR, 3DPeS, PRID 2011 and i-LIDS-119. The obtained figures
clearly outperform the best previously published results on all of them.

The rest of the paper is organized as follows. Section 2 briefly describes
the state-of-the-art methods included in the supervised single-shot category.
Section 3 presents synthetically the BFiVe method. Sections 4 and 5 explain
the techniques we propose for the description of images and for the learning of
the scoring functions, respectively, while Section 6 illustrates the on-line usage of
the method. Section 7 presents the experimental validation of BFiVe including
a comparison with the state-of-the-art, the methodology followed for parameters
selection, and an analysis of the computational complexity. Section 8 analyzes
several aspects of the proposed method, discussing its main features. Section 9
concludes the paper.

2. Related works

In this section, we review several works in recent literature that fall into
the supervised, single-shot re-identification category. Methods in this class are
characterized by specific features used to describe the images and by specific
procedures that make use of a labelled data-set to learn a metric by enforcing
small distances among data of the same class (images depicting the same per-
son). The usage of common data-sets and evaluation protocols is mandatory
for a direct and meaningful comparison of the method’s performance.

In Ma et al. [7], the color image is firstly divided into large, fixed, non-
overlapping rectangular regions and each pixel is described by simple feature
vectors. The feature vectors of the pixels that fall in each region are encoded and
aggregated into Fisher Vectors, which are then concatenated and dimensionally
reduced with Principle Component Analysis (PCA) to obtain the final signature
of the image. Using Pairwise Constrained Component Analysis (PCCA) [8] a
similarity metric, sLDFV, is learnt, i.e. a projection into a low-dimensional
space where distances between pairs of signatures respect the desired matching
constraints.

In Pedagadi et al. [9] images are described by very high dimensional fea-
tures based on local color histograms and their statistics in HUV and HSV
color spaces, separately. The feature vectors can be exploited in an efficient way
using a dimensionality reduction approach that combines unsupervised and su-
pervised techniques, namely PCA and Local Fisher discriminative analysis (LF).
The Euclidean metric is then used for the comparison. In the same paper, a
novel statistic is introduced to characterize re-identification performance, called
Proportion of Uncertainty Removed (PUR) index. It is invariant to test set size,
and we use it to evaluate our method’s performance.

In [10, 11, 12], the main focus is on metric learning rather than on feature
selection specific to the re-identification task. In [10], a Support Vector Machine
framework is proposed to obtain an optimized metric for nearest neighbor clas-
sification called Large Margin Nearest Neighbor with Rejection (LMNN-R), i.e.
the classifier returns no matches if all neighbors are beyond a certain distance.

3
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The signature is built by applying a PCA reduction to the concatenation of his-
tograms of color channels (RGB and HSV) extracted from a grid of rectangular
overlapping windows.

In [11], relaxed pairwise distance metric learning, RP-MeL, is used to address
the problem of maximizing the probability that a pair of images depicting the
same person has a smaller distance than a pair of different individuals. Once
the metric has been learnt, only linear projections are necessary at search time,
where a nearest neighbor classification is performed. The image descriptor is
obtained by merging local color and texture features computed on overlapping
rectangular regions, then reduced with PCA. In [12], a “keep it simple and
straightforward metric” (KISSME) was introduced to learn a distance metric
from equivalence constraints. The method is applied on a variety of challenging
benchmarks including person re-identification across spatially disjoint cameras,
using the same descriptors as [11].

The KISSME metric learning algorithm is also used by Ma et al. in [13] to
improve the discriminative ability of their proposed descriptors: To gain robust-
ness to illumination variations, scale and shifts, the image representation relies
on the combination of biologically inspired features [14] based on covariance
descriptors. This approach, named kBiCov, that focuses on feature selection
and on metric learning, produces one of the best results currently present in
literature.

In the re-identification task, one of the main problems is the different re-
sponses of the camera due to sensor variability, illumination changes, and aim-
ing angle. Hirzer et al. [15], address the ’different camera properties problem’
by learning a transition function from one camera to an other. This is realized
by learning a Mahalanobis metric using pairs of images coming from differ-
ent cameras. The mean color values from small image regions are combined
with a histogram of Local Binary Patterns to represent an image, and then
pairwise sample differences are learnt for re-identification, considering corre-
spondent people and also impostors that invade the perimeter of a given pair
(Efficient Impostor-based Metric Learning, EIMeL).

In [28] the authors formulate a relative distance comparison (RDC) model, to
maximise the likelihood of a pair of true matches that have a relatively smaller
distance compared to an incorrect matching pair in a soft discriminant manner.
The descriptors are obtained by dividing the images into six horizontal stripes.
For each stripe, color features and texture features are extracted, giving rise
to an image descriptor vector in a 2784 dimensional feature space. The model
is based on logistic functions which are learnt with an iterative optimization
algorithm on subsets of the data and then combined in an ensemble way to
obtain the final RDC.

Li and Wang [16] propose locally aligned feature transforms, LAFT, for
matching people across camera views that can have complex cross-view varia-
tions. Images to be matched are softly assigned to different local experts of a
gating network according to the similarity of cross-view transforms, then they
are projected to a common feature space and matched with a locally learnt
discriminative metric.
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An original framework is proposed in [17], where a reference set of images
is used to generate reference-based descriptors for probe and gallery people.
The starting signatures are built from color and texture features following the
approach in [11]. In the training phase, a reference set of image pairs is used
to learn a subspace in which the data of the same subjects from different cam-
eras are maximally correlated using Regularized Canonical Correlation Analysis
(RCCA). The so-called reference descriptors (RDs) of probe and, respectively,
gallery images are then obtained by projecting the original feature vectors into
the RCCA subspace using the two learnt matrices. Re-identification is per-
formed by comparing the RDs of the probes and the RDs of the gallery images.
In this way, a direct comparison of probes and gallery images is avoided.

3. Outline of the BFiVe method

In this section, we provide an overview of the proposed re-identification
method, which is outlined in Figure 1. As labelled data-sets are crucial for
developing supervised methods, we briefly explain their typical structure and
usage in the context of single-shot re-identification algorithms. Such data-sets
consist of a set of NP individuals each depicted in two images, typically taken
from different cameras: D = {(Ia1 , I

b
1), (Ia2 , I

b
2), . . . , (IaNP

, IbNP
)}, where a and b

indicate the first and the second view, respectively.
In order to train the algorithm and to evaluate system performance, the

data-set is (randomly) split into two disjoint parts DL and DT , called learning

set and test set, with cardinality NL and NT, respectively. The learning set is
used to train the re-identification system and the test set is used to evaluate
the performance on people and images never seen during the training phase. To
perform this last step, the view pairs of the test set of individuals are split and
assigned to two different sets, called probes and gallery. For each probe image,
the system provides a ranking of the gallery images based on their similarity to
the probe. By knowing the gallery individuals corresponding to the probes it
is possible to evaluate the quality of the rankings and compare performance of
the different methods.

The supervised phase consists of three steps: image description, training
of weak learners, and adaptive boosting (Figure 1 top). The input is a set
of labelled samples along with some system parameters, while the output is a
scoring function, that associates to each couple of images a score expressing
the likelihood that the two images depict the same individual. In the first
step, the image is regarded as a set of local regions, called receptive fields. For
each receptive field, color and gradient low-level features are extracted at pixel
level, decorrelated, and then encoded by means of Fisher Vectors. This is a
technique based on the Fisher Kernel [18], popular in image classification [19]
and used in [7] for person re-identification. The receptive field descriptors are
then dimensionally reduced after applying PCA.

In the second step, using the labelled learning set, the local descriptors are
employed to estimate a weak scoring function, or weak learner, for each receptive
field. The definition of a weak scoring function is based on: (i) the differences

5
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Figure 1: A schematic view of the proposed method.The learning phase takes place off-line
(top) using a data-set of labelled samples (learning set) and system parameters. Through three
main steps (orange boxes), a scoring function is generated and a set of internal parameters,
which are used on-line (bottom) where a probe image, is compared with the gallery images
and a ranked list is produced. Best viewed in color.

between correspondent local descriptors of each image pair in the learning set,
and (ii) on the comparison of the difference distributions coming from image
pairs depicting the same individual and different individuals, respectively.

In the third step of the learning phase we compute a scoring function, Ω,
defined as a linear combination of a subset of the weak learners that are selected,
along with their coefficients, through an adaptive boosting procedure.

The on-line usage of the re-identification system, Figure 1 (bottom), involves
a probe image and a set of gallery images. The images are described by means
of a set of Fisher Vectors using the internal parameters learnt in the off-line
phase. The learnt function Ω, which associates a similarity score to a couple
of images, permits the system to sort the gallery images with respect to their
similarity to the probe.

4. Image description

In this section, we explain our technique for the description of an image
depicting a single individual.

6
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4.1. Receptive fields

As a preliminary step, images are re-scaled to a prefixed size M ×N . Next,
they are regarded as a cover of receptive fields, connected regions characterized
by various sizes and shapes. As shown in Figure 2, in our case, receptive fields
are overlapping rectangular regions covering the image at different levels (i, j).
The pair (i, j) indicates the number of parts the image is split into, respectively,
along the vertical and horizontal direction.

At level (i, j), the rectangle’s size is M/i × N/j and the row and column
coordinates of the top-left corner span the range [0,M(i − 1)/i] with step M

2i

and the range [0, N(j − 1)/j] with step N
2j , respectively (dots in Figure 2). The

number of rectangles at level (i, j) is (2i− 1)(2j − 1). The number of receptive
fields NRF in the example in Figure 2 is 104.

We emphasize the fact that the region set includes tiles with different sizes,
such as the whole image and small overlapping cells, obtained by dividing the
image into regions in a pyramidal way.

4.2. Low-level feature extraction

Input images are firstly converted from RGB into HSL and into Y CbCr

color spaces and the following ordered set of NC = 5 channels is considered:
C = {H,S, L,Cb, Cr}. We ignore the Y channel because it is strongly correlated
to L. For each color channel c ∈ C, we compute the gradient maps cx and
cy along the horizontal and vertical axis, respectively, and the second order
derivatives cxx, and cyy. For each image component c, each pixel p = (xp, yp) is
described, as in [7], by the following 7-dimensional low-level feature vector:

Dc(p) = (xp, yp, c(p), cx(p), cy(p), cxx(p), cyy(p)).

4.3. Fisher encoding

The Fisher Vector encoding method aims to fit a generic probabilistic model
P (X; Θ) to the data – where Θ represents the model parameters and X the data
– and then to characterize the data by its deviation from the generative model.
The deviation is measured using the derivative of the data log-likelihood with
respect to the model parameters, called ‘score’:

G(X,Θ) =
∂

∂Θ
lnP (X; Θ). (1)

The covariance matrix of the score vector is known as the Fisher Information
Matrix (FIM). The Fisher Vector of X is defined [19] as the normalization of
the score in Eq. 1, obtained by applying the triangular matrix of the FIM’s in-
verse Cholesky decomposition. The Fisher Vector is used as a signature for the
data, which can be classified using a discriminative classifier. Generally, mixture
models are chosen as generative models because of their attractive flexibility for
the estimation of underlying density. The components of the convex combina-
tion are themselves densities with vector valued parameters. We assume that
the data points are generated from a mixture of a finite number of multivariate

7
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Gaussian distributions, i.e. we model the density distribution of data with the
classical Gaussian Mixture Model (GMM), and, following [19], we assume that
the covariance matrices of the components are diagonal. This generative model
also offers the advantage of tractability in computing the needed gradients.

For each receptive field R ∈ R = {R1, . . . , RNRF
} and for each channel c ∈ C,

we model the distribution of the data {Dc(p)}p∈R by means of a mixture of K
Gaussians:

gΘ(R,c)(x) =
K
∑

i=1

wigi(x;µi, σi) (2)

where wi are the weights of the different components and the parameter vector
is Θ(R, c) = (µ1, . . . , µK , σ1 . . . , σK), with µi indicating the means of the K
multivariate Gaussians, and σi their diagonal covariance matrices. The mixture
parameters Θ(R, c) are estimated by using a maximum likelihood approach over
a subset of images randomly selected from the learning set DL.

As explained in [19], it is good practice to reduce the dimension of low-
level descriptors using PCA before fitting the Gaussian Mixture Model. In our
case, we apply principal component mapping to decorrelate the features without
reducing the space dimension, since it is already low. In this way, the diagonal
covariance matrices assumption made by the considered model, is better fulfilled.

For each receptive field R and for each channel c, we then compute the Fisher
Vector fR,c using the estimated generative model. This descriptor has the ad-
vantage to have a fixed number of components, independently of the number
of pixels in the receptive field. The dimension of fR,c is given by the number
of the Gaussian mixture parameters involved in the Fisher Vector computation,
2K, times the dimension d of the low-level feature vectors (d = 7, in our case).
The final descriptor FR, for a receptive field R, is the vector built by concate-
nating the NC vectors fR,c with c ∈ C. Its dimension is Nfv = 2K dNC . In our
experiments, we use K = 16 which yields a local descriptor with Nfv = 1120
components. The parameters of the GMMs are stored in a repository to be used
in the prediction phase.

4.4. Dimensionality reduction

Dimensionality reduction is commonly used as a preprocessing step before
training a supervised learner. One might expect that the dimensionality re-
duction influences the generalization performance because some information is
discarded. In line with other works, e.g. [13], we found through experimenta-
tion that by applying PCA dimensionality reduction to descriptors gives rise to
the double benefit of reducing the size of the vector and thus the complexity of
the method, and increasing system performance.

PCA computes the linear transformation that projects the training descrip-
tors into a variance-maximizing subspace. Although PCA operates in an unsu-
pervised setting, without using the labels from the training set, it still exhibits
useful properties in the loop of the recognition process because of (i) de-noising
the information carried by the descriptor and (ii) decorrelating the data. An ex-
cessive reduction of the descriptor dimension causes a loss of information carried

8
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by FR, negatively affecting re-identification performance. Selecting the correct
number of principal components is crucial to the success of PCA in representing
the data-set. The most suitable number ℓ of principal components (PCs) to be
considered for the dimensionality reduction can be obtained by applying mul-
tiple rounds of cross-validation using different partitions of the learning set. ℓ
is chosen among a reasonable set of first principal directions L = {ℓ1, . . . , ℓNL

}.
We perform PCA computation by means of an iterative method based on Expec-
tation Maximization [20], that permits us to compute only the desired number
of principal components without computing all of them.

For each receptive field R, we compute the reduced Fisher Vector F̂R ∈ R
ℓ.

The parameters involved in the dimensionality reduction step, i.e. mean vector,
scale and projection matrix, for each receptive field, are stored in the mentioned
repository to be used during prediction.

Summing up, at this stage the description of an image I is obtained as a set
of local functions:

 LR : I 7→ F̂R ∈ R
ℓ (3)

with R ∈ R and ℓ representing the chosen dimension for descriptor reduction.
The computation of the image descriptor set makes use of the following data:

• the projection matrices to decorrelate the low-level feature vectors; they
are NC ×NRF;

• the GMM parameter vectors Θ(R, c) for each c ∈ C;

• the parameters for the Fisher Vector PCA reduction to ℓ-dimensional sub-
space: mean vector, scale and projection matrix.

5. Scoring function learning

Boosting is a general iterative method that combines a set of weak classifiers
(or learners) to form a strong classifier. The final classifier is a linear combi-
nation of the selected weak learners, each weighted by a coefficient estimated
by the boosting procedure. The core idea is to assign a weight to each training
sample in order to change their importance during the procedure. Hard to clas-
sify samples tend to have higher weights than the others. In fact, misclassified
samples increase the error according to their weight. At each iteration, samples
are re-weighted according to the result of their classification.

Re-identification, however, is regarded as a ranking problem rather than
a classification one. Adaptive boosting methods have been proposed to build
strong ranking functions starting from a set of weak rankers [21]. In this case,
the goal is to form a ranking function that respects at best a set of pairwise
constraints among samples.

Our goal is to learn a scoring function that associates to each pair of images
the likelihood that they depict the same person. Therefore, samples are repre-
sented by couples of images and the pairwise constraints try to force image pairs
depicting the same person to have a higher score with respect to pairs depicting

9
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different people. In the next two subsections, we (i) define the weak learners
used in the first learning step of BFiVe and (ii) describe the second learning
step, i.e. the boosting procedure to obtain the strong ranker.

5.1. Training of weak learners

A weak learner (or weak ranker) is a scoring function that associates to a
pair of images the likelihood they depict locally the same person. We train NRF

weak learners, one for each receptive field R that is described by means of a ℓ-
dimensional vector. Let Ivi be an image, where v is the view, a or b, and i ∈ IL =
{1, . . . , NL}, the set of indices of the learning set elements. The images Ivi have
been described by means of a family of ℓ-dimensional vectors { LR(Ivi )}R∈R. As
we are focusing on a fixed R, for the sake of notation simplicity, let us denote
in this subsection, the vector  LR(Ivi ) simply with x

v
i .

Let SR and DR be the sets containing the differences of local descriptors of
image pairs depicting, respectively, the same individual (similar) and different
individuals (dissimilar):

SR = {xa
i − x

b
i , x

b
i − x

a
i | i ∈ IL}

DR = {xv
i − x

w
j |i, j ∈ IL, i 6= j; v, w ∈ {a, b}}.

Both the vector sets are modelled by means of multivariate Gaussian distribu-
tions:

P (x|SR) = (2π)−
ℓ

2 |ΣS |
− 1

2 e−
1

2
x

t
Σ

−1

S
x

P (x|DR) = (2π)−
ℓ

2 |ΣD|
− 1

2 e−
1

2
x

t
Σ

−1

D
x

with variance ΣS and ΣD, respectively, which are ℓ × ℓ symmetric, positive
semi-definite matrices. The means of the distributions are the null vector, as
for each vector difference x in SR, or in DR, also the opposite vector −x belongs
to the same set.

The scoring function characterizing the weak learner is directly derived from
the log-likelihood ratio log(P (x|SR)/P (x|DR)). Having modeled the probabili-
ties as multivariate Gaussian [22], we have:

log
P (x|SR)

P (x|DR)
=

log
(2π)−

ℓ

2 |ΣS |
− 1

2 e−
1

2
x

t
Σ

−1

S
x

(2π)−
ℓ

2 |ΣD|−
1

2 e−
1

2
x

tΣ
−1

D
x

= (4)

1

2
(− log |ΣS | − x

tΣ−1
S

x + log |ΣD|+ x
tΣ−1

D
x).

By eliminating offset and scale, which do not affect the ranking, we define the
following function:

Ω̂R : R
ℓ → R

Ω̂R(x) = x
t(Σ−1

D
−Σ−1

S
)x.
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Finally, the weak scoring function ΩR of two images I, J is defined as follows:

ΩR(I, J) = Ω̂R( LR(I)−  LR(J)). (5)

It is completely determined by the matrix MR = Σ−1
D
−Σ−1

S
.

Summing up, for each receptive field R the weak learner training procedure
generates the ℓ× ℓ matrix MR that defines the scoring function ΩR.

5.2. Adaptive boosting

The adaptive boosting algorithm is detailed in Algorithm 1. The input
consists of the weak learners ΩR, the learning set images DL and the maximum
number of iterations Nloop.

The sample set consists of pairs of images si,j = {(Iai , I
b
j )}i,j∈IL

taken from
DL (line 4). The initial weights wi,j assigned to samples whose images depict
the same person are set to 0.6/NL, while for the other samples the weight is set
to 0.4/(N2

L −NL) (lines 6-8). In this way, we initially give more importance to
ranking errors of similar pairs with respect to the others.

Starting from the set of weak learners {ΩR | R ∈ R}, the iterative boosting
procedure selects, at each k-th iteration, the learner ΩRk

that produces the
minimum error E on the training samples (lines 15-19).
We define the error function E of the weak learner as the sum of the weights
associated to the incorrectly ranked samples. Formally:

E =
∑

i



Ξ(i)wi,i +
∑

j

χ(i, j)wi,j



 (6)

where

χ(i, j) =

{

1 if ΩR(Iai , I
b
j ) ≥ ΩR(Iai , I

b
i )

0 otherwise

Ξ(i) =

{

1 if
∑

j χ(i, j) > 1

0 otherwise

Let ΩRk
be the ranker that gives rise to the minimum error Emin at iteration

k. ΩRk
is selected to be part of the final strong learner and its coefficient αk is

computed as a function of the minimum error (lines 20-21). At each iteration,
the weights of the samples are updated depending on the outcome of their
ranking and then normalized to sum to one (lines 23-26). Note that the same
weak learner can be selected in more than one iteration.

The final scoring function is a linear combination of the scalar functions
selected by the boosting procedure, each one weighted by the associated coeffi-
cient:

Ω(I, J) =
∑

k

αkΩRk
(I, J). (7)

Summing up, the training procedure gives rise to a subset of selected recep-
tive fields {Rk} ⊆ R, each one specifing a weak scoring function ΩRk

, along
with the associated coefficients αk. They allow the computation of the final
scoring function in Eq. 7.

11
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Algorithm 1 Adaptive boosting procedure.

1: Input: DL, Nloop, ΩR

2: Output: Ω list
3: ⋄ build the training samples

4: S ← {si,j = (Iai , I
b
j )}i,j∈IL

5: ⋄ initialize weights of samples

6: for all i, j ∈ {1, . . . , NL} do

7: wi,j =

{

0.6/NL if i = j
0.4/(N2

L −NL) otherwise
8: end for
9: ⋄ initialize the scoring functions list

10: Ω list← ∅
11: k ← 0
12: while k < Nloop do
13: ⋄ initialize the minimum error

14: Emin ←∞
15: for all (R) do
16: select scoring function ΩR

17: compute its error E on S as in Eq. 6
18: update Emin and best (Rk)
19: end for
20: αk ←

1
2 log((1− Emin)/Emin)

21: Ω list← Ω list ∪ {(ΩRk
, αk)}

22: ⋄ update weights of training samples

23: for all i, j ∈ {1, . . . , NL} do

24: wi,j =

{

wi,je
−αk si,j correctly ranked

wi,je
αk otherwise

25: end for
26: normalize weights to sum 1.0
27: k ← k + 1
28: end while

6. Prediction

The on-line phase involves a cropped image depicting a person (probe Ip)
that has to be compared to a set of images (gallery: {Ig1 , . . . , Igm}), typically
stored in a repository along with their descriptors. The local descriptors of each
Igi are computed relatively only to the subset of random fields Rk involved in the
learnt scoring function (Eq. 7). The computation of the local descriptors uses
the internal parameters stored during the training phase: projection matrices
to decorrelate the low-level features, GMM parameters for the Fisher Vector
computation, and PCA dimensionality reduction matrices.

The descriptor of the probe image Ip is computed in the same way. Next, the
scoring function Ω is applied to each pair (Ip, Igi), with i = 1, . . . ,m, yielding
a list of scores that enables the system to rank the gallery images with respect

12
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to their similarity to the probe.

7. Experimental results

The proposed method has been tested on four data-sets, namely VIPeR [23],
3DPeS [24], PRID 2011 [25], and i-LIDS-119 [26], following the experimental
protocol used by the large majority of the works that adopt them. We compare
our method with the results of the best state-of-art techniques which fall in the
supervised single-shot category, using the figures declared by their authors.

Re-identification methods are classically evaluated by comparing their Cu-
mulative Matching Characteristic (CMC) curve. The curve synthesizes the qual-
ity of the gallery image rankings produced by the algorithm for each probe in
the test set. The CMC curve provides, for a given rank r (on the horizontal
axis), the probability that the rank of the correct person falls in the first r posi-
tions of the ranking output by the re-identification system (on the vertical axis).
By knowing the correct correspondence between probe and gallery images it is
possible to create a histogram h where the r-th bin counts how many times the
correct image has rank r. The histogram is then normalized by dividing every
bin by NT. The CMC curve is the cumulative histogram of h. Often, results are
presented in tables where only the probabilities corresponding to some selected
ranks are reported. Other indices used to compare re-identification methods are
nAUC (normalized Area Under Curve) and PUR (Proportion of Uncertainty Re-
moved) [9]. The first one represents the normalized area under the CMC curve,
while the second computes the uncertainty reduction in re-identification after
the ranking computation.

The VIPeR data-set can be considered the standard data-set for person re-
identification. Almost all recent works in this field compare their results using
VIPeR. It contains 1264 images depicting 632 individuals, each one observed
from two different point of views. The images are size normalized to 128× 48.
The data-set is characterized by relevant variations in viewpoint and illumina-
tion, causing strong differences in people appearance.

The data-set 3DPeS contains various video sequences taken from a real
surveillance network, composed of 8 cameras, monitoring a section of a Uni-
versity campus. Data was collected during several days and is characterized by
strong illumination variations. A selection of snapshots from the database has
been extracted specifically to validate re-identification algorithms. There are
1012 snapshots of 200 individuals. Only 192 of them appear in at least two
images. The images are not size normalized, the rows vary from 88 to 362 and
the columns from 31 to 272, while the average size is about 158× 74.

The PRID 2011 data-set contains images of several individuals taken by two
surveillance cameras, named A and B. Images taken from camera A and camera
B depict, respectively, 385 and 749 individuals, with 200 of them appearing in
both views. The main difficulty related to this data-set comes from the fact
that there are significant differences in people pose, illumination conditions and
background characteristics. The images are size normalized to 128× 64.

13
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The i-LIDS for re-identification data-set, also known as i-LIDS-119, was built
from the i-LIDS Multiple-Camera Tracking Scenario. It contains 476 images
captured by non-overlapping cameras, representing 119 people. The number of
images for each individual varies from 2 to 8 and the image dimensions from
32 × 76 to 115 × 294. In addition to pose changes and illumination variations,
people in this data-set are also subject to occlusion and often only the top part
of the person is visible.

Examples of image pairs depicting the same person, taken from different
data-sets, are visualized in Figure 3.

7.1. Parameters selection

The presented method depends on some parameters that affect, to a different
extent, the re-identification performance. The involved parameters are: NP , NL,
NT, NRF, M × N , K, ℓ, Nloop. Some parameter values depend on the data-set
(NP ) or are mandatory to make a fair comparison with state-of-the-art methods
(NL, NT), other have been fixed at design time after some preliminar tests (NRF,
M ×N , K), proving a good trade-off between performance and computational
complexity.

The value of ℓ, Nloop parameters have been estimated during a cross valida-
tion test based on image pairs in the learning set. To this purpose, we randomly
split the learning set into two parts: a reduced training set and a cross valida-
tion set, respectively containing approximately 3/4 and 1/4 of the number of
learning set couples. Table 1 reports the number of elements in the two parts
for the considered data-sets.

Parameter VIPeR 3DPeS PRID 2011 i-LIDS-119
NL 316 96 100 89
NLR 250 72 75 66
NLC 66 24 25 23

Table 1: Number of people in the learning set, NL, in the reduced learning set, NLR and in
the cross validation set, NLC , for each data-set.

Selecting the most suitable number ℓ of principal components is relevant to
the system performance, and it will be discussed in Section 8. ℓ is chosen among
a reasonable set of first principal directions L = {ℓ1, . . . , ℓNL

} by repeating the
following procedure:

1. compute Fisher descriptors on the reduced learning set;

2. reduce dimensionality by selecting the first ℓ PCs;

3. build the corresponding weak-learners using the reduced learning set;

4. apply the boosting procedure;

5. evaluate performance on the cross validation set, and keep track of the
best result.

14
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Parameter VIPeR 3DPeS PRID 2011 i-LIDS-119

NP 632 192 200(∗) 119
NL 316 96 100 89
NT 316 96 100(∗) 30(∗∗)

M ×N 128× 64 128× 64 128× 64 128× 64
NRF 104 104 104 104
K 16 16 16 16
ℓ 90 40 40 40

Nloop 59 58 60 38

Table 2: The table shows the values of the parameters involved in the proposed algorithm for
the considered data-sets. In order to make a fair comparison with state-of-the-art methods,
549 extra images are added to the gallery in (∗) and about 90 images populate the probes
part of the test set in (∗∗).

The dimension ℓ giving the best performance in terms of average PUR index (in
the first 300 boosting iterations) has been selected. Figure 4 plots the average
PUR index on the cross validation set over 30 random splits across different
PCA reductions, for all the considered data-sets.

The value of the Nloop parameter is estimated analogously, although it is
not critical from a certain point onwards. Figure 5 shows the behaviour of
the PUR index with respect to the number of boosting iterations (Nloop). For
all the data-sets, the plots increase quickly to reach a stable value. Therefore,
we selected the number of boosting iterations corresponding to the first local
maximum in the steady state. Table 2 reports the estimated values of ℓ and
Nloop along with the those of the other system parameters.

Concerning the computation of the Fisher Vectors fR,c we used the GMM-
Fisher Library by J. Sanchez which is a sub-library of Encoding Methods Eval-

uation Toolkit [27]. In the vector normalization step of fR,c we used the library
default parameters (α = 0.5 and norm Lp = L2) i.e. the standard power nor-
malization, which consists of transforming each element of the vector by the
square root of its absolute value, then followed by the l2 normalization, which
consists of rescaling the vector to have unit l2-norm.

7.2. Results

In this section, we report the figures obtained by BFiVe on four data-sets.
In order to increase the reliability of the results, training and tests are repeated
30 times using different random partitions2 and the average scores are reported
in tables and also presented by means of CMC curves. They express the prob-
abilities that the correct person falls within the first positions in the ranking

2To permit fair comparisons we provide the list of images for the different partitions of the
considered data-sets at tev.fbk.eu/bfivesplits
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provided by our method and related state-of-the-art methods, that were briefly
described in Section 2.

VIPeR. Following the standard protocol for this data-set, it is randomly
split into two sets of 316 image pairs, the former used to train the re-
identification module and the latter to evaluate its performance. Table 3 and
Figure 6 compare the performance of BFiVe with respect to the most relevant
recent state-of-the-art methods. Our method clearly outperforms the others in
all the rankings.

3DPeS. The set of 192 people appearing in at least two images is randomly
split into two halves which populate the learning and the test set, respectively.
Among the images available for each person, two are randomly selected to be
part of the learning or test set. The selected images have been normalized to
size 128 × 64. Table 4 and Figure 7 show how our method outperforms the
state-of-the art. As the 3DPeS data-set has been made available only recently,
the comparison is limited to three methods (figures taken from [9]).

PRID 2011. The data-set includes 200 individuals observed by both cam-
eras. They are randomly split into two subsets of equal size that compose
the learning and the test set. Only a few works have evaluated their methods
on this data-set using a protocol which includes in the gallery set all the 549
images depicting people taken from camera B but not from camera A. As a
consequence the probe set consists of 100 images while the gallery contains 649
images. Table 5 and Figure 8 compare the performance of BFiVe with respect
to that methods. Our algorithm outperforms the others in all the rankings on
this data-set, too.

i-LIDS-119. Following the protocol presented in [28], the set is divided in
two parts: p people for the test set and 119 − p for the learning set. As each
individual is depicted in a variable number of images (from 2 to 8) taken from
different cameras, one image is randomly selected as a gallery image, while the
remaining views form the probe set. As a consequence the gallery set consists
of p images while the probe set contains a variable number of images, around
3p. We used the training data in a single-shot fashion, i.e. two views have been
randomly selected, one for the gallery and one for the probes of the learning set.

Table 6 and Figure 9 compares the performance of BFiVe with respect to
recent state-of-the-art methods using the same protocol, with p = 30. BFiVe

clearly outperforms the others in all the rankings.

7.3. Computational complexity

In this section, we present an analysis of the computational complexity of
the proposed method. The complexity, reported in Table 7, is expressed as a
function of the system parameters along with the following quantities:

• the number of iterations of the EM algorithm to estimate the Gaussian
Mixture Models (NEM);

• the number of different weak learners involved in the final scoring function
(NW) whose maximum value is given by min(Nloop, NRF);
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Method Rank

(nr of random splits) 1 10 20 50 100
BFiVe (30) 38.9 81.9 91.1 98.3 99.9
kBiCov[13] (10) 31.1 70.7 82.4 - -
RCCA[17] (10) 30 75 87 96 99
LAFT[16] (100) 29.6 69.3 81.3 96.8 -
RP-MeL[11] (10) 27 69 83 95 99
sLDFV[7] (100) 26.5 70.9 84.6 - -
LF[9] (100) 24.2 67.1 81.4 94.1 -
EIMeL[15] (10) 22 63 78 93 98
KISSME[12] (100) 20 62 75 92 -
RDC[28] (10) 15.7 53.9 70.1 - -

Table 3: VIPeR - The table shows the probability (in percentage) that the correct person
appears in the first Rank (1, 10, 20, 50, 100) positions in the similarity ranked list. The figures
are computed on test sets as averages over a number (shown in parenthesis) of random parti-
tions of the data-set into training and test. The nAUC for BFiVe is 0.981, while for kBiCov
it is 0.965. The PUR index of the proposed method is 0.574.

Method Rank PUR
(nr of random splits) 1 10 25 50 index
BFiVe (30) 41.7 73.4 86.7 95.9 0.464
LF[9] (100) 33.4 70.0 84.8 95.1 0.349
KISSME[12] (100) 22.9 62.2 80.7 93.2 0.255
LMNN-R[10] (100) 23.0 55.2 73.4 88.9 0.211

Table 4: 3DPeS - The table shows the probability (in percentage) that the correct person
appears in the first Rank (1, 10, 25, 50) positions in the similarity ranked list. The nAUC
of the proposed method is 0.905. The last column reports the PUR index of the referenced
methods as published in [9].

• the total number of pixels in all the receptive fields (NPIX);

• the total number of pixels in the receptive fields involved in the final
scoring function (Npix).

Their mean and standard deviation values over 30 tests are presented in Table 8
for the considered data-sets.

8. Discussion

In this section, we present a discussion about the main features of the pro-
posed method and emphasize those that mostly contribute to its good perfor-
mance. Furthermore, we perform an analysis of the contribution of the receptive
fields and their associated scoring functions to the final strong ranker. Finally,
we show some examples where the system performs poorly.
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Method Rank

(nr of random splits) 1 10 20 50 100
BFiVe (30) 19.6 52.7 65.2 79.4 96.1
RP-MeL[11] (10) 15 42 54 70 80
EIMeL[15] (10) 15 38 50 67 80

Table 5: PRID 2011 - The table shows the probability (in percentage) that the correct
person appears in the first Rank (1, 10, 20, 50, 100) positions in the similarity ranked list. The
nAUC of the proposed method is 0.947 and the PUR index is 0.485.

Method Rank

(nr of random splits) 1 5 10 20
BFiVe (30) 48.09 74.85 87.37 97.65
RDC[28] (10) 44.05 72.74 84.69 96.29
kBiCov[13] (10) 39.17 68.19 82.10 95.26

Table 6: i-LIDS-119 (test with p = 30) - The table shows the probability (in percentage)
that the correct person appears in the first Rank (1, 5, 10, 20) positions in the similarity ranked
list. The nAUC of the proposed method is 0.890 and the PUR index is 0.426.

In common with other works in literature, BFiVe (i) is based on local de-
scriptors extracted from several regions that cover the image (receptive fields),
(ii) exploits the descriptive power of Fisher Vectors, and (iii) adopts a scoring
function based on the well-known likelihood ratio discriminant function. The
most relevant difference with respect to other works is that the scoring function
is not based on the concatenation of local descriptors, but instead many local
scoring functions are learnt, one for each receptive field, and these scoring func-
tions are then combined using a boosting procedure. Moreover, we show that
the introduction of a PCA-based reduction of the local descriptors provides a
remarkable benefit to system performance.

8.1. Combination of scoring functions

We start by comparing the performance of our boosting method to com-
bine local scoring functions, with respect to learning a single function built on
the concatenation of local descriptors. To this end, the design of a simplified
experiment has been necessary by considering that the concatenation of 104
receptive field descriptors, reduced to a dimension of, for example, 60 PCA,
gives rise to a vector in a 6240-dimensional space, and that training our scoring
function requires the system to compute and invert two covariance matrices in
such high-dimensional space. We therefore considered a subset of 11 receptive
fields – those belonging to levels (1 × 1), (2 × 1), (4 × 1) – each described by a
vector projected on ℓ-dimensional PCA subspaces, with ℓ varying from 5 to 30
with a step of 5.

Figure 10 (left), compares the PUR index of the ranking obtained on the
VIPeR data-set while using two different ways of combining the local descriptors
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Prediction

Low-level features extraction
and decorrelation O(NpixNC d

2)
Fisher vector computation O(NfvNpix)
Fisher vector PCA reduction O(NfvNWℓ)
Score computation O(NWℓ

2)
Training

Low-level feature extraction
and decorrelation O(NLNpixNC d

2)
GMM data modelling O(NLNfvNPIXNEM)
Fisher vector computation O(NLNfvNPIX)
Fisher vector PCA reduction O(NLNRFNfv ℓ)
Building weak learners O(NRF (N2

L + ℓ2.373))
Boosting O(NloopNRFN

2
L )

Table 7: The computational complexity of the main steps of the proposed method. Figures
are expressed in terms of the values of the system parameters. The off-line and on-line steps
are reported separately.

Param VIPeR 3DPeS PRID 2011 i-LIDS-119
mean std mean std mean std mean std

NEM 15.2 3.4 14.6 2.4 14.1 2.9 15.4 2.4
NW 29.2 3.4 20.4 4.1 23.8 2.7 20.6 2.3
NPIX 125440 - 125440 - 125440 - 125440 -
Npix 39987 6481 24917 7744 32700 7442 33775 6439

Table 8: Parameters values (mean and standard deviation) that affect the computational
complexity of the proposed method, measured in 30 tests performed in the experimental
session on different data-sets.
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of the receptive fields. The first one corresponds to the BFiVe method (Boost-
ing), while the second one corresponds to the concatenation of the descriptors
into a single vector (Concatenation) which encloses the same information.

An analogous behaviour is obtained if the dimensionality reduction is
performed by random feature selection instead of PCA. The graph in Fig-
ure 10 (right) compares the PUR index of boosting ranking, obtained on VIPeR
data-set, while using two different ways of reducing the dimensionality of de-
scriptors – namely principal components (PCA) and random selection (Ran-
dom). Again, only 11 receptive fields are considered in this experiment.

Results clearly show that the integration of local scoring functions is better
than concatenation, even with a different dimensionality reduction method. Fur-
thermore, by comparing PUR figures on the left and on the right in Figure 10,
we can observe that in this task PCA dimensionality reduction is significantly
more suitable than a random feature selection.

8.2. PCA dimensionality reduction

We analyze the impact on system performance of the PCA-based reduction
of descriptors dimension and in particular of the value of the ℓ parameter. In
order to be independent of the boosting algorithm, only the receptive field at
level (1 × 1), i.e. covering the whole image, has been considered in the tests.
The plots in Figure 11 show the ranking performance on VIPeR data-set while
varying the number of principal components used to describe the receptive field.
Performance on both the training and the test set are reported in terms of
recognition rate at Rank 1, Rank 10 and Rank 50, and in terms of PUR index.

As expected, the PUR index on the training set increases while the number
of retained components increases, while on the test set it reaches a maximum
around the value ℓ = 100 and then drops for larger ℓ values. This behaviour
is caused by the fact that as ℓ increases the same happens to the number of
parameters of the Gaussians that model the similar and dissimilar data. As a
consequence, from a certain point on, overfitting takes place and the general-
ization ability of the learnt scoring function drops. This is even more evident if
we consider the plots in Figure 12. Here the scoring function associated to the
single receptive field at level (1 × 1) is used as a similar/dissimilar classifier: a
pair of images, whose difference descriptor vector is x, is classified as represent-
ing the same individual if P (x|S) > P (x|D), i.e. they are ‘similar’ if the value
in Eq. 4 is positive, ‘dissimilar’ otherwise.

The plots show true positive and true negative accuracies, for training and
test set, at different numbers of principal components. At around ℓ = 100, we
observe a sudden drop of true positive accuracy in the test set, again due to
overfitting the training set, causing a deterioration of the ranking performance.

In order to evaluate the sensitivity of the method to different PCA dimen-
sionality reductions and to highlight the effectiveness of parameter estimation,
we computed the CMC curves at different values of parameter ℓ on the test
sets for each data-set. Figure 13 reports, as an example, the result of the study
on the ViPER data-set. We observe that the dimension selected by the cross-
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validation procedure provides good performance, close to the best (ℓ = 110
provides slightly better PUR index with respect to ℓ = 90).

8.3. Contribution of receptive fields

Receptive fields contribute to a different extent (including not contribute at
all) to the final ranker, depending on the selection process during the boost-
ing stage. For this reason, we investigate how weak learners contribute to the
building of the strong learner.

The average number of different weak learners involved in the final scoring
function NW is available in Table 8. As an example, in the case of VIPeR they
are only about 29.2 (average over 30 random splits) out of the 104 in the pool.
Figure 14 shows the receptive fields that produced the first 10 more relevant
scoring functions (in terms of α) for a random partition of ViPER data-set. In
this partition, the different weak learners involved in the final scoring function
are 31.

Figure 15 shows the percentage of the receptive fields, level per level, involved
in the final scoring function (average over 30 random splits). It is evident in all
data-sets that small sized regions are preferred over the largest one.

Furthermore, we analyzed the contribution to the final ranker at pixel level.
Figure 16 graphically shows how many times the image pixels have been used
in the final scoring function. The picture is a mean over 30 random splits of the
considered data-sets. It can be observed that relevant information is localized
in two main areas for VIPeR and PRID 2011, one area for 3DPES and one for
i-LIDS-119. In 3DPES, relevant information is more localized with respect to
the other data-sets.

8.4. Failure examples

Finally, in Figure 17 we show, for each data-set, an example of where the
proposed algorithm fails to rank the correct person in the first 10 positions. As
we observe from these examples, major difficulties for the algorithm arise from
people having similar clothing. Concerning the i-LIDS-119 data-set, occluded
subjects pose a major problem.

9. Conclusions

In this paper, a supervised learning approach for single-shot person re-
identification is proposed. The descriptor of a person image consists of a set of
local region descriptors based on Fisher Vectors extracted from a coarse to fine
image partition, starting from color and gradient features of the pixels in the
region.

The training phase acts in two steps. In the first step, each region descriptor
is used to define a weak scoring function, or weak ranker, that, when applied
to a pair of images, produce a similarity score between them. In this way, it is
possible to sort a database of known people with respect to the likelihood they
depict the same person by only regarding corresponding portions of the images.
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The second step consists of a boosting procedure, that is performed to select
a subset of the weak scoring functions to minimize a ranking error computed
on the learning set. The error takes into account the relative position in the
ranking of image pairs depicting the same person with respect to those depicting
different individuals. The final scoring function is a weighted combination of
the selected weak ranking functions. The function is applied on a test set to
evaluate the proposed method.

We experimentally demonstrated that using weak learners with a boosting
strategy outperforms the use of a single learner based on a descriptor containing
the same information.

The experiments, conducted on publicly available data-sets that are typically
used in single-shot re-identification papers, show that the proposed method
outperforms the state-of-the-art: the recognition rate at rank 1 is 38.9% on
VIPeR, 41.7% on 3DPeS, 19.6% on PRID 2011, and 48.1% on i-LIDS-119.
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(1,1) (2,1) (4,1) (8,1)

(1,2) (2,2) (4,2) (8,2)

Figure 2: Image coverage by means of receptive fields. The number of parts in which the
image is split along the vertical and horizontal direction is indicated under each subdivision.
At each level, the highlighted rectangle represents the region shape and the dots represent the
possible locations of its top-left corner.
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VIPER

3DPES

PRID 2011

i-LIDS-119

Figure 3: Some shots taken from the data-sets used in the experimental session. Images in
the same box depict the same person.
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Figure 4: For each data-set: average PUR index, over 30 random splits, computed on the
cross-validation set across a different number of considered PCs. The dimension ℓ giving the
best PUR indices is highlighted.
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Figure 5: Average PUR index, computed over 30 cross-validation tests, across boosting loops
for descriptors reduced to the best dimension (reported after the data-set name). The selected
Nloop are highlighted with a small circle.
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Figure 6: ViPER - CMC curves to compare BFiVe with several other methods.
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Figure 7: 3DPeS - CMC curves to compare BFiVe with other state-of-the-art methods.

29



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

� �

� �� �� �� �� �� �� �� 	� 
� ���

���

����

����

����

	���

�����

��������

�����

�����

�����

���


�

�
�

�
�

� 
��

�
�

�
 �

Figure 8: CMC curves on PRID-2011 to compare BFiVe performance with two methods on
the same data-set.
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Figure 9: CMC curves on i-LIDS-119 data-set to compare BFiVe performance with two other
methods.
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Figure 10: Ranking result comparisons with different combination of local descriptors (Boost-
ing vs Concatenation) and different modes of dimensionality reduction of local descriptors
(PCA vs Random).
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Figure 11: The plots show the recognition performance of one local descriptor, on training
and on test sets, versus the number of retained principal components in the descriptor dimen-
sionality reduction. Experiments were conducted on the VIPeR data-set using the receptive
field at level (1× 1).
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Figure 12: The figure shows the classification performance of the scoring function associated
to a single receptive field used as a similar/dissimilar classifier. It shows the accuracy on
training and test sets versus the number of retained principal components. Experiments were
conducted on the VIPeR data-set using the receptive field at level (1× 1).
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Figure 13: Average CMC curves on the VIPeR test sets. The curves and the associated PUR
indices show the BFiVe performance at different PCA dimensionality reductions, varying in
the range 50–150.
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α = 1.20 α = 1.12 α = 0.86 α = 0.84 α = 0.78

α = 0.58 α = 0.44 α = 0.43 α = 0.38 α = 0.37

Figure 14: Receptive fields associated to the ten most relevant scoring functions, from a total
of 31, generated by the training procedure on a random split of VIPeR. The corresponding α

coefficients are also reported.
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Figure 15: Percentage usage of receptive fields, grouped per level (i × j), for four data-sets
(averaged over 30 random splits). Smaller sized regions are preferred over the largest one
(1× 1).
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VIPER 3DPES PRID2011 i-LIDS-119

Figure 16: Visualization of the relative contribution of the different image regions to the final
scoring function (averaged over 30 random splits) for four data-sets (from left to right: VIPeR,
3DPeS, PRID 2011 and i-LIDS-119). Heatmap representation, best viewed in color.
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Figure 17: Examples of images in which the algorithm ranks the correct person from the
gallery outside the first ten positions. For each considered data-set, the figure reports a probe
image, on the left, and the first ten ranked people of the gallery. The last column shows the
correct correspondence, which is positioned at a higher rank (11th position for VIPeR, 15th
for 3DPeS, 16th for PRID 2011, 19th for i-LIDS-119).
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We propose BFiVe, a new supervised algorithm for single-shot person re-identification. 

 

The descriptors are a set of compressed local Fisher vectors extracted from a coarse to fine image 

subdivision. 

 

In the training step each region gives rise to a learnt weak ranking function. 

 

The ranking function of the image gallery is obtained by a boosted selection of a weak learner subset. 

 

The matching rate at rank 1 on VIPeR is 38.9%, on 3DPes 41.7%, on PRID-2011 19.6%, on i-LIDS-119 

48.1%. 
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